Chuck-a-luck and then some by Brian & Co.

import java.util.*;

/***************/
/* THE PROGRAM */
/***************/

/** A place to play a game involving a single roll of one or more sets of dice.
 *
 *  In North America "joint" refers to any kind of carnival stand. In other parts of
 *  the world, it is a slang term for a gathering place. On the fairground it is used
 *  as a generic term for any form of portable sideshow of the ground booth variety.
 *  Walkup shows, which have raised platforms for the performers, are not so described.
 *
 *  Source: https://conklinshows.com/info/dictionary/j.html
 */
public class CarnivalJoint
{
    /** Gets and oversees (begins, conducts, ends) a game.
     *  If no game is specified, display help message.
     *  If an invalid game is specified, an exception is thrown.
     */
    public static void main(String args[]) {

        if (args.length == 0) {
            System.out.println(help);
            return;
        }

        final String gameKey = args[0];
        final CarnivalDiceGame game = getDiceGame(gameKey);
        final Croupier employee = new Carny(game);

        System.out.println(gameKey + ": " + game);
        employee.beginGame(args).conductGame().endGame();
    }

    private static String help =
      "Play a single round of a dice game that accepts wagers.\n" +
      "\n" +
      "COMMAND LINE ARGUMENTS\n" +
      "\n" +
      "args[0]: Game key; selects a game; default is Chuck-a-luck.\n" +
      "args[i] (i > 0): Zero or more game-specific wagers.\n" +
      "\n" +
      "GAME KEY EXAMPLES\n" +
      "\n" +
      "CAL, CAL6, CAL-6: Typical chuck-a-luck using regular six-sided dice.\n" +
      "ACAL, ACAL-6: Alternate chuck-a-luck (six-sided dice).\n" +
      "CAL12, ACAL-12: Chuck-a-luck using 12-sided dice (dodecahedrons).\n" +
      "HR, play a fun game of high roll with your mates! this includes 3 6-sided die!" +
      "\n" +
      "COMMAND LINE ARGUMENTS EXAMPLES\n" +
      "\n" +
      "CAL-6 Big Triple 12 24\n" +
      "\n" +
      "Typical chuck-a-luck using six-sided dice, wagering that the sum of the\n" +
      "values shown on each die will be a 'Big' value or a 'Triple' or 12 or 24.\n" +
      "\n" +
      "Risk 3 2\n" +
      "\n" +
      "Attacker rolls 3; defender rolls 2; outputs number of armies lost by whom.\n" +
      "\n" +
      "RisiKo! 3 3\n" +
      "\n" +
      "Attacker rolls 3; defender rolls 3; outputs number of armies lost by whom.";

    /* The joint's dice sets. */

    private static final Die[] twelveSidedDiceCage = {
        new Dodecahedron(),
        new Dodecahedron(),
        new Dodecahedron()
    };
    private static final Die[] sixSidedDiceCage = {
        new FairSixSidedAsciiDie(),
        new FairSixSidedAsciiDie(),
        new FairSixSidedAsciiDie()
    };
    private static final Die[] redRiskDice = {
        new FairSixSidedAsciiDie(),
        new FairSixSidedAsciiDie(),
        new FairSixSidedAsciiDie()
    };
    private static final Die[] whiteRiskDice = {
        new FairSixSidedAsciiDie(),
        new FairSixSidedAsciiDie(),
        new FairSixSidedAsciiDie()
    };
    private static final Die[] highRollDice = {
        new FairSixSidedAsciiDie(),
        new FairSixSidedAsciiDie(),
        new FairSixSidedAsciiDie()
    };

    /** Given a game key, returns a game or throws an exception. */
    private static CarnivalDiceGame getDiceGame(String key) {

        // Standard Risk or RisiKo!

        if (key.indexOf("Risk") >=0)
            return new StandardRisk(redRiskDice, whiteRiskDice);
        if (key.indexOf("RisiKo!") >= 0)
            return new RisiKo(redRiskDice, whiteRiskDice);

        // Chuck-a-luck or Alternate Chuck-a-luck

        final Die[] diceCage = (key.indexOf("12") >= 0) ?
            twelveSidedDiceCage : sixSidedDiceCage;

        if (key.indexOf("ACAL") >= 0)
            return new AlternateChuckALuck(diceCage);
        if (key.indexOf("CAL") >= 0)
            return new ChuckALuck(diceCage);
            
        if (key.indexOf("HR") >= 0)
            return new HighRoll(sixSidedDiceCage);

        // Bad game key.

        throw new IllegalArgumentException("Invalid game key:" + key);
    }
}

/**************/
/* INTERFACES */
/**************/

/** An object that can begin a game (with inputs), conduct a game, and end a game.
 *
 *  A croupier is someone appointed at a gambling table to assist in the conduct of the game,
 *  especially in the distribution of bets and payouts. Croupiers are typically employed by
 *  casinos. Originally a "croupier" meant one who stood behind a gambler, with extra reserves
 *  of cash to back him up during a gambling session. The word derived from "croup" (the rump
 *  of a horse) and was by way of analogy to one who rode behind on horseback. It later came to
 *  refer to one who was employed to collect the money from a gaming-table.
 *
 *  Source: https://en.wikipedia.org/wiki/Croupier
 */
interface Croupier
{
    Croupier beginGame(String[] inputs);
    Croupier conductGame();
    Croupier endGame();
}

interface CarnivalGame
{
    CarnivalGame processInputs(String[] inputs);
    CarnivalGame printResults();
}

interface DiceGame
{
    DiceGame analyzeDice();
    DiceGame rollDice();
    DiceGame showDice();
}

interface CarnivalDiceGame extends CarnivalGame, DiceGame
{
}

interface Die
{
    Die roll();
    Integer valueOf();
}

/********************/
/* CARNIVAL WORKERS */
/********************/

/** A Croupier that oversees a game.
 *
 *  Carny, also spelled carnie, is an informal term used in North America
 *  for a traveling carnival employee, and the language they use, particularly
 *  when the employee plays a game ("joint"), food stand ("grab" or "popper"),
 *  or ride at a carnival. The term "showie" is used synonymously in Australia.
 *  Carny is thought to have become popularized around 1931 in North America,
 *  when it was first colloquially used to describe one who works at a carnival.
 *  The word carnival, originally meaning a "time of merrymaking before Lent,"
 *  came into use circa 1549.
 *
 *  Source: https://en.wikipedia.org/wiki/Carny
 */
final class Carny implements Croupier
{
    private CarnivalDiceGame game;

    public Carny(CarnivalDiceGame game) {
        this.game = game;
    }
    public Carny beginGame(String[] inputs) {
        game.processInputs(inputs);
        return this;
    }
    public Carny endGame() {
        game.printResults();
        return this;
    }
    public Carny conductGame() {
        game.rollDice().showDice().analyzeDice();
        return this;
    }
}

/*********/
/* GAMES */
/*********/

/** A game of chance involving a single roll of two sets of dice similar to a roll used to
 *  determine the units lost in round of a battle in variations of the board game Risk.
 *  Inputs are the numbers of dice rolled by an attacker and a defender. The output is the
 *  dice rolled grouped by attacker and defender, sorted by value, and the number of armies
 *  lost and by either the attacker or the defender or both.
 *
 *  Risk is a strategy board game of diplomacy, conflict and conquest for two to six players.
 *  The standard version is played on a board depicting a political map of Earth, divided into
 *  forty-two territories, which are grouped into six continents. Turn rotates among players
 *  who control armies of playing pieces with which they attempt to capture territories from
 *  other players, with results determined by dice rolls.
 *
 *  See: https://en.wikipedia.org/wiki/Risk_(game)
 */
abstract class AbstractRisk implements CarnivalDiceGame
{
    private final int maxRed;
    private final int maxWhite;
    private final Die[] redDice;
    private final Die[] whiteDice;
    protected final List<Die> attackingDice = new LinkedList<Die>();
    protected final List<Die> defendingDice = new LinkedList<Die>();
    protected int offensiveCasualties = 0;
    protected int defensiveCasualties = 0;

    protected AbstractRisk(Die[] redDice, int maxRed, Die[] whiteDice, int maxWhite) {
        if (redDice.length < maxRed) {
            throw new IllegalArgumentException("Too few red dice.");
        }
        if (whiteDice.length < maxWhite) {
            throw new IllegalArgumentException("Too few white dice.");
        }
        this.redDice = redDice;
        this.whiteDice = whiteDice;
        this.maxRed = maxRed;
        this.maxWhite = maxWhite;
    }
    public abstract AbstractRisk analyzeDice();
    public AbstractRisk printResults() {
        reportCasualties("Attacker",  offensiveCasualties);
        reportCasualties("Defender",  defensiveCasualties);
        return this;
    }
    public AbstractRisk processInputs(String[] inputs) {
        if (inputs.length < 3) {
            throw new IllegalArgumentException("Too few inputs.");
        }
        selectDice(Integer.parseInt(inputs[1]), Integer.parseInt(inputs[2]));
        return this;
    }
    public AbstractRisk rollDice() {
        for (Die redDie : attackingDice) {
            redDie.roll();
        }
        Collections.sort(attackingDice, AbstractDie.descendingComparator);
        for (Die whiteDie : defendingDice) {
            whiteDie.roll();
        }
        Collections.sort(defendingDice, AbstractDie.descendingComparator);
        return this;
    }
    public AbstractRisk showDice() {
        System.out.println("Attacking (Red)");
        for (Die redDie : attackingDice) {
            System.out.println(redDie);
        }
        System.out.println("Defending (White)");
        for (Die whiteDie : defendingDice) {
            System.out.println(whiteDie);
        }
        return this;
    }
    public String toString() {
        return "A round of a battle in a game of Risk.";
    }
    private void selectDice(final int attackWager, final int defendWager) {
        verifyWagers(attackWager, defendWager);
        attackingDice.clear();
        for (int i = 0; i < attackWager; i++) {
            attackingDice.add(redDice[i]);
        }
        defendingDice.clear();
        for (int i = 0; i < defendWager; i++) {
            defendingDice.add(whiteDice[i]);
        }
    }
    private void verifyWagers(final int attackWager, final int defendWager) {
        if (attackWager < 1 || attackWager > maxRed) {
            throw new IllegalArgumentException("Offensive wager out of range: " + attackWager);
        }
        if (defendWager < 1 || defendWager > maxWhite) {
            throw new IllegalArgumentException("Defensive wager out of range: " + defendWager);
        }
    }
    private static void reportCasualties(final String who, final int count) {
        if (count == 0) return;
        System.out.print(who + " loses " + count + " arm");
        System.out.println(count == 1 ? "y." : "ies.");
    }
}

/** An instance of an AbstractRisk game that adopts rules of a standard game of Risk.
 *
 *  Defenders always win ties when dice are rolled. This gives the defending player the advantage
 *  in "one-on-one" fights, but the attacker's ability to use more dice offsets this advantage.
 *  It is always advantageous to roll the maximum number of dice, unless an attacker wishes to
 *  avoid moving men into a 'dead-end' territory, in which case they may choose to roll fewer than
 *  three. Thus when rolling three dice against two, three against one, or two against one, the
 *  attacker has a slight advantage, otherwise the defender has an advantage.
 *
 *  See also: https://en.wikipedia.org/wiki/Risk_(game)
 */
class StandardRisk extends AbstractRisk
{
    protected StandardRisk(Die[] redDice, int maxRed, Die[] whiteDice, int maxWhite) {
        super(redDice, maxRed, whiteDice, maxWhite);
    }
    public StandardRisk(Die[] redDice, Die[] whiteDice) {
        this(redDice, 3, whiteDice, 2);
    }
    /**
     *  Precondition: Wagers have been made, dice have been rolled, and the
     *  attacking and defending dice have been arranged in order from largest
     *  to smallest value.
     */
    public StandardRisk analyzeDice() {
        defensiveCasualties = 0;
        offensiveCasualties = 0;
        final int n = attackingDice.size();
        final int m = defendingDice.size();
        for (int i = 0; i < n && i < m; i++) {
            if (attackingDice.get(i).valueOf() > defendingDice.get(i).valueOf()) {
                defensiveCasualties++;
            }
            else {
                offensiveCasualties++;
            }
        }
        return this;
    }
}

/** An instance of an AbstractRisk game that adopts rules of RisiKo! (a variation of Risk).
 *
 *  RisiKo! derives from the 1957 French game La ConquĂȘte du Monde, better known worldwide as Risk.
 *  RisiKo! is a variant of the game released in Italy, in which the defender is allowed to roll up
 *  to three dice to defend. This variation dramatically shifts the balance of power towards defense.
 *
 *  See: https://en.wikipedia.org/wiki/RisiKo!
 *  See also: https://en.wikipedia.org/wiki/Risk_(game)
 */
class RisiKo extends StandardRisk
{    
    public RisiKo(Die[] redDice, Die[] whiteDice) {
        super(redDice, 3, whiteDice, 3);
    }
    public String toString() {
        return "A round of battle in a game of RisiKo!";
    }
}

/** A partial simulation of the dice game Chuck-a-luck that determines winners
 *  but does not compute gains or losses based on odds.
 *
 *  Chuck-a-luck, also known as birdcage, is a game of chance played with three
 *  dice. It is derived from grand hazard and both can be considered a variant
 *  of sic bo, which is a popular casino game, although chuck-a-luck is more of
 *  a carnival game than a true casino game. The game is sometimes used as a
 *  fundraiser for charity.
 *
 *  Chuck-a-luck is played with three standard dice that are kept in a device
 *  shaped somewhat like an hourglass that resembles a wire-frame bird cage
 *  and pivots about its centre. The dealer rotates the cage end over end, with
 *  the dice landing on the bottom. Wagers are placed based on possible
 *  combinations that can appear on the three dice.
 *
 *  WAGER   DESCRIPTION
 *  n       A specific number will appear. (Known as "Single".)
 *  Triple  Any of the triples (all three dice show the same number) will appear.
 *  Big     The total score will be 11 (alternatively 12) or higher and not a triple.
 *  Small   The total score will be 10 (alternatively 9) or lower and not a triple.
 *  Field   The total score will be outside the range of 8 to 12 (inclusive).
 *
 *  Source: https://en.wikipedia.org/wiki/Chuck-a-luck
 */
abstract class AbstractChuckALuck implements CarnivalDiceGame
{
    public static final String
        Triple = "Triple", Big = "Big", Small = "Small", Field = "Field";

    protected final Die[] dice;
    protected final List<String> results = new LinkedList<String>();
    private String[] inputs;

    public AbstractChuckALuck(Die[] dice) {
        if (dice.length != 3) {
            throw new IllegalArgumentException("Wrong number of dice.");
        }
        this.dice = dice;
    }
    public abstract AbstractChuckALuck analyzeDice();
    public AbstractChuckALuck printResults() {
        for (int i = 1; i < inputs.length; i++) {
            String bet = inputs[i];
            if (results.indexOf(bet) >= 0) {
                System.out.println("Number " + i + " wagered " + bet + " and wins!");
            }
        }
        return this;
    }
    public AbstractChuckALuck processInputs(String[] inputs) {
        this.inputs = inputs;
        return this;
    }
    public AbstractChuckALuck rollDice() {
        for (Die die : dice) die.roll();
        return this;
    }
    public AbstractChuckALuck showDice() {
        for (Die die : dice) System.out.println(die);
        return this;
    }
}

/** An instance of AbstractChuckALuck that uses typical rules.
 *
 *  WAGER   DESCRIPTION
 *  Big     The total score will be 11 or higher and not a triple.
 *  Small   The total score will be 10 or lower and not a triple.
 */
class ChuckALuck extends AbstractChuckALuck {
    public ChuckALuck(Die[] dice) {
        super(dice);
    }
    public ChuckALuck analyzeDice() {
        final Integer
          v1 = dice[0].valueOf(),
          v2 = dice[1].valueOf(),
          v3 = dice[2].valueOf();

        final int sum = v1 + v2 + v3;
        results.clear();

        // For "Single" wagers.
        results.add(v1.toString());
        results.add(v2.toString());
        results.add(v3.toString());

        if (v1 == v2 && v2 == v3) {
            results.add(Triple);
        }
        else if (sum >= 11) {
            results.add(Big);
        }
        else if (sum <= 10 ) {
            results.add(Small);
        }
        if (sum < 8 || sum > 12) {
            results.add(Field);
        }
        return this;
    }
    public String toString() {
        return "Chuck-a-Luck";
    }
}

/** An instance of AbstractChuckALuck that uses alternate rules.
 *
 *  WAGER   DESCRIPTION
 *  Big     The total score will be 12 or higher and not a triple.
 *  Small   The total score will be 9 or lower and not a triple.
 */
class AlternateChuckALuck extends AbstractChuckALuck {
    public AlternateChuckALuck(Die[] dice) {
        super(dice);
    }
    public AlternateChuckALuck analyzeDice() {
        final Integer
          v1 = dice[0].valueOf(),
          v2 = dice[1].valueOf(),
          v3 = dice[2].valueOf();

        final int sum = v1 + v2 + v3;
        results.clear();

        // For "Single" wagers.
        results.add(v1.toString());
        results.add(v2.toString());
        results.add(v3.toString());

        if (v1 == v2 && v2 == v3) {
            results.add(Triple);
        }
        else if (sum >= 12) { // ALTERNATE RULE
            results.add(Big);
        }
        else if (sum <= 9 ) { // ALTERNATE RULE
            results.add(Small);
        }
        if (sum < 8 || sum > 12) {
            results.add(Field);
        }
        return this;
    }
    public String toString() {
        return "Alternate Chuck-a-Luck";
    }
}

/********/
/* DICE */
/********/

class AscendingDiceComparator implements Comparator<Die>
{
    public final int compare(Die d1, Die d2) { return d1.valueOf().compareTo(d2.valueOf()); }
}

class DescendingDiceComparator implements Comparator<Die>
{
    public final int compare(Die d1, Die d2) { return -1 * d1.valueOf().compareTo(d2.valueOf()); }
}

class AsciiDie3x7 {
    public static final String[] sides = {
        "---------\n" +
        "|       |\n" +
        "|   *   |\n" +
        "|       |\n" +
        "---------"
        ,
        "---------\n" +
        "| *     |\n" +
        "|       |\n" +
        "|     * |\n" +
        "---------"
        ,
        "---------\n" +
        "| *     |\n" +
        "|   *   |\n" +
        "|     * |\n" +
        "---------"
        ,
        "---------\n" +
        "| *   * |\n" +
        "|       |\n" +
        "| *   * |\n" +
        "---------"
        ,
        "---------\n" +
        "| *   * |\n" +
        "|   *   |\n" +
        "| *   * |\n" +
        "---------"
        ,
        "---------\n" +
        "| *   * |\n" +
        "| *   * |\n" +
        "| *   * |\n" +
        "---------"
        ,
        "---------\n" +
        "| *   * |\n" +
        "| * * * |\n" +
        "| *   * |\n" +
        "---------"
        ,
        "---------\n" +
        "| * * * |\n" +
        "| *   * |\n" +
        "| * * * |\n" +
        "---------"
        ,
        "---------\n" +
        "| * * * |\n" +
        "| * * * |\n" +
        "| * * * |\n" +
        "---------"
        ,
        "---------\n" +
        "| ***** |\n" +
        "|       |\n" +
        "| ***** |\n" +
        "---------"
        ,
        "---------\n" +
        "| ***** |\n" +
        "|   *   |\n" +
        "| ***** |\n" +
        "---------"
        ,
        "---------\n" +
        "| ***** |\n" +
        "| *   * |\n" +
        "| ***** |\n" +
        "---------"
        ,
        "---------\n" +
        "| ***** |\n" +
        "| * * * |\n" +
        "| ***** |\n" +
        "---------"
        ,
        "---------\n" +
        "|*******|\n" +
        "|       |\n" +
        "|*******|\n" +
        "---------"
        ,
        "---------\n" +
        "|*******|\n" +
        "|   *   |\n" +
        "|*******|\n" +
        "---------"
        ,
        "---------\n" +
        "|*******|\n" +
        "|*     *|\n" +
        "|*******|\n" +
        "---------"
        ,
        "---------\n" +
        "|*******|\n" +
        "|*  *  *|\n" +
        "|*******|\n" +
        "---------"
        ,
        "---------\n" +
        "|*** ***|\n" +
        "|*** ***|\n" +
        "|*** ***|\n" +
        "---------"
        ,
        "---------\n" +
        "|*** ***|\n" +
        "|*******|\n" +
        "|*** ***|\n" +
        "---------"
        ,
        "---------\n" +
        "|*******|\n" +
        "|*** ***|\n" +
        "|*******|\n" +
        "---------"
        ,
        "---------\n" +
        "|*******|\n" +
        "|*******|\n" +
        "|*******|\n" +
        "---------"
    };
}

abstract class AbstractDie implements Die
{
    public static Comparator<Die> ascendingComparator = new AscendingDiceComparator();
    public static Comparator<Die> descendingComparator = new DescendingDiceComparator();
    private Integer value;

    protected AbstractDie() {
        value = nextValue();
    }
    public abstract int numberOfSides();
    public final Die roll() {
        value = nextValue();
        return this;
    }
    public String toString() {
        return value.toString();
    }
    public final Integer valueOf() {
        return value;
    }
    protected abstract int nextValue();
}

abstract class AbstractFairDie extends AbstractDie
{
    protected final int nextValue() {
        return (int)(1 + Math.random() * numberOfSides());
    }
}

class FairSixSidedDie extends AbstractFairDie
{
    public int numberOfSides() { return 6; }
}

class FairSixSidedAsciiDie extends FairSixSidedDie
{
    public String toString() {
        return AsciiDie3x7.sides[valueOf() - 1];
    }
}

class Dodecahedron extends AbstractFairDie
{
    public int numberOfSides() { return 12; }
    public String toString() {
        return AsciiDie3x7.sides[valueOf() - 1];
    }
}    
class HighRoll implements CarnivalDiceGame
{
    public int sum;
    private int maxValue;
    private int[] Dice;
    private int highDice;
    public HighRoll(int maxValue, int[] Dice, int highDice) {
        this.maxValue = maxValue;
        this.Dice = Dice;
        this.highDice = highDice;
        
        
    }
    public HighRoll(Die[] highRollDice) {
        
    }
    public HighRoll analyzeDice() {
        return this;
    }
    public HighRoll rollDice() {
        
        int three = 3;
        int dice1 = (int)(Math.random()* 6);
        int dice2 = (int)(Math.random()* 6);
        int dice3 = (int)(Math.random()* 6);
        int[] dice = {dice1, dice2, dice3};
        int max1 = findMax(dice);
        int max2 = findMax(dice);
        int max3 = findMax(dice);
        sum = max1 + max2 + max3;
        System.out.println("sum is " + sum);
        System.out.print("eeeeeeeeeeeeee " + sum);
        return this;
    }
    public int findMax(int[] dice) {
        int max = dice[0];
        for(int i = 0; i < dice.length; i++) {
            if(dice[i] > max) {
                max = dice[i];
            }
        }
        return max;
        
    }
    
    
    public HighRoll showDice() {
        return this;
    }
    public HighRoll printResults() {
        return this;
    }
    public HighRoll processInputs(String[] inputs) {
        
        String inputs1 = inputs[1];
        int intInput1 = Integer.parseInt(inputs1);
        String inputs2 = inputs[2];
        int intInput2 = Integer.parseInt(inputs2);
        System.out.println("input 1 is " + inputs1);
        System.out.println("input 2 is " + inputs2); 
        System.out.println("sum is " + sum);
        
        if(intInput1 <= 15) {
            if(intInput2 >= (sum - 2) && intInput2 <= (sum + 2)) {  //|| intInput2 <= (sum + 2) && intInput2 >= (sum)))  
                System.out.print("you won " + (intInput1 * 2) + "Dollars!!!");
            }
            else {
                System.out.print("haha loser!!!");
            }
        }
        else {
            System.out.print("too much money!");
        }
        return this;
    }
}