import java.util.*; /***************/ /* THE PROGRAM */ /***************/ /** A place to play a game involving a single roll of one or more sets of dice. * * In North America "joint" refers to any kind of carnival stand. In other parts of * the world, it is a slang term for a gathering place. On the fairground it is used * as a generic term for any form of portable sideshow of the ground booth variety. * Walkup shows, which have raised platforms for the performers, are not so described. * * Source: https://conklinshows.com/info/dictionary/j.html */ public class CarnivalJoint { /** Gets and oversees (begins, conducts, ends) a game. * If no game is specified, display help message. * If an invalid game is specified, an exception is thrown. */ public static void main(String args[]) { if (args.length == 0) { System.out.println(help); return; } final String gameKey = args[0]; final CarnivalDiceGame game = getDiceGame(gameKey); final Croupier employee = new Carny(game); System.out.println(gameKey + ": " + game); employee.beginGame(args).conductGame().endGame(); } private static String help = "Play a single round of a dice game that accepts wagers.\n" + "\n" + "COMMAND LINE ARGUMENTS\n" + "\n" + "args[0]: Game key; selects a game; default is Chuck-a-luck.\n" + "args[i] (i > 0): Zero or more game-specific wagers.\n" + "\n" + "GAME KEY EXAMPLES\n" + "\n" + "CAL, CAL6, CAL-6: Typical chuck-a-luck using regular six-sided dice.\n" + "ACAL, ACAL-6: Alternate chuck-a-luck (six-sided dice).\n" + "CAL12, ACAL-12: Chuck-a-luck using 12-sided dice (dodecahedrons).\n" + "HR, play a fun game of high roll with your mates! this includes 3 6-sided die!" + "\n" + "COMMAND LINE ARGUMENTS EXAMPLES\n" + "\n" + "CAL-6 Big Triple 12 24\n" + "\n" + "Typical chuck-a-luck using six-sided dice, wagering that the sum of the\n" + "values shown on each die will be a 'Big' value or a 'Triple' or 12 or 24.\n" + "\n" + "Risk 3 2\n" + "\n" + "Attacker rolls 3; defender rolls 2; outputs number of armies lost by whom.\n" + "\n" + "RisiKo! 3 3\n" + "\n" + "Attacker rolls 3; defender rolls 3; outputs number of armies lost by whom."; /* The joint's dice sets. */ private static final Die[] twelveSidedDiceCage = { new Dodecahedron(), new Dodecahedron(), new Dodecahedron() }; private static final Die[] sixSidedDiceCage = { new FairSixSidedAsciiDie(), new FairSixSidedAsciiDie(), new FairSixSidedAsciiDie() }; private static final Die[] redRiskDice = { new FairSixSidedAsciiDie(), new FairSixSidedAsciiDie(), new FairSixSidedAsciiDie() }; private static final Die[] whiteRiskDice = { new FairSixSidedAsciiDie(), new FairSixSidedAsciiDie(), new FairSixSidedAsciiDie() }; private static final Die[] highRollDice = { new FairSixSidedAsciiDie(), new FairSixSidedAsciiDie(), new FairSixSidedAsciiDie() }; /** Given a game key, returns a game or throws an exception. */ private static CarnivalDiceGame getDiceGame(String key) { // Standard Risk or RisiKo! if (key.indexOf("Risk") >=0) return new StandardRisk(redRiskDice, whiteRiskDice); if (key.indexOf("RisiKo!") >= 0) return new RisiKo(redRiskDice, whiteRiskDice); // Chuck-a-luck or Alternate Chuck-a-luck final Die[] diceCage = (key.indexOf("12") >= 0) ? twelveSidedDiceCage : sixSidedDiceCage; if (key.indexOf("ACAL") >= 0) return new AlternateChuckALuck(diceCage); if (key.indexOf("CAL") >= 0) return new ChuckALuck(diceCage); if (key.indexOf("HR") >= 0) return new HighRoll(sixSidedDiceCage); // Bad game key. throw new IllegalArgumentException("Invalid game key:" + key); } } /**************/ /* INTERFACES */ /**************/ /** An object that can begin a game (with inputs), conduct a game, and end a game. * * A croupier is someone appointed at a gambling table to assist in the conduct of the game, * especially in the distribution of bets and payouts. Croupiers are typically employed by * casinos. Originally a "croupier" meant one who stood behind a gambler, with extra reserves * of cash to back him up during a gambling session. The word derived from "croup" (the rump * of a horse) and was by way of analogy to one who rode behind on horseback. It later came to * refer to one who was employed to collect the money from a gaming-table. * * Source: https://en.wikipedia.org/wiki/Croupier */ interface Croupier { Croupier beginGame(String[] inputs); Croupier conductGame(); Croupier endGame(); } interface CarnivalGame { CarnivalGame processInputs(String[] inputs); CarnivalGame printResults(); } interface DiceGame { DiceGame analyzeDice(); DiceGame rollDice(); DiceGame showDice(); } interface CarnivalDiceGame extends CarnivalGame, DiceGame { } interface Die { Die roll(); Integer valueOf(); } /********************/ /* CARNIVAL WORKERS */ /********************/ /** A Croupier that oversees a game. * * Carny, also spelled carnie, is an informal term used in North America * for a traveling carnival employee, and the language they use, particularly * when the employee plays a game ("joint"), food stand ("grab" or "popper"), * or ride at a carnival. The term "showie" is used synonymously in Australia. * Carny is thought to have become popularized around 1931 in North America, * when it was first colloquially used to describe one who works at a carnival. * The word carnival, originally meaning a "time of merrymaking before Lent," * came into use circa 1549. * * Source: https://en.wikipedia.org/wiki/Carny */ final class Carny implements Croupier { private CarnivalDiceGame game; public Carny(CarnivalDiceGame game) { this.game = game; } public Carny beginGame(String[] inputs) { game.processInputs(inputs); return this; } public Carny endGame() { game.printResults(); return this; } public Carny conductGame() { game.rollDice().showDice().analyzeDice(); return this; } } /*********/ /* GAMES */ /*********/ /** A game of chance involving a single roll of two sets of dice similar to a roll used to * determine the units lost in round of a battle in variations of the board game Risk. * Inputs are the numbers of dice rolled by an attacker and a defender. The output is the * dice rolled grouped by attacker and defender, sorted by value, and the number of armies * lost and by either the attacker or the defender or both. * * Risk is a strategy board game of diplomacy, conflict and conquest for two to six players. * The standard version is played on a board depicting a political map of Earth, divided into * forty-two territories, which are grouped into six continents. Turn rotates among players * who control armies of playing pieces with which they attempt to capture territories from * other players, with results determined by dice rolls. * * See: https://en.wikipedia.org/wiki/Risk_(game) */ abstract class AbstractRisk implements CarnivalDiceGame { private final int maxRed; private final int maxWhite; private final Die[] redDice; private final Die[] whiteDice; protected final List<Die> attackingDice = new LinkedList<Die>(); protected final List<Die> defendingDice = new LinkedList<Die>(); protected int offensiveCasualties = 0; protected int defensiveCasualties = 0; protected AbstractRisk(Die[] redDice, int maxRed, Die[] whiteDice, int maxWhite) { if (redDice.length < maxRed) { throw new IllegalArgumentException("Too few red dice."); } if (whiteDice.length < maxWhite) { throw new IllegalArgumentException("Too few white dice."); } this.redDice = redDice; this.whiteDice = whiteDice; this.maxRed = maxRed; this.maxWhite = maxWhite; } public abstract AbstractRisk analyzeDice(); public AbstractRisk printResults() { reportCasualties("Attacker", offensiveCasualties); reportCasualties("Defender", defensiveCasualties); return this; } public AbstractRisk processInputs(String[] inputs) { if (inputs.length < 3) { throw new IllegalArgumentException("Too few inputs."); } selectDice(Integer.parseInt(inputs[1]), Integer.parseInt(inputs[2])); return this; } public AbstractRisk rollDice() { for (Die redDie : attackingDice) { redDie.roll(); } Collections.sort(attackingDice, AbstractDie.descendingComparator); for (Die whiteDie : defendingDice) { whiteDie.roll(); } Collections.sort(defendingDice, AbstractDie.descendingComparator); return this; } public AbstractRisk showDice() { System.out.println("Attacking (Red)"); for (Die redDie : attackingDice) { System.out.println(redDie); } System.out.println("Defending (White)"); for (Die whiteDie : defendingDice) { System.out.println(whiteDie); } return this; } public String toString() { return "A round of a battle in a game of Risk."; } private void selectDice(final int attackWager, final int defendWager) { verifyWagers(attackWager, defendWager); attackingDice.clear(); for (int i = 0; i < attackWager; i++) { attackingDice.add(redDice[i]); } defendingDice.clear(); for (int i = 0; i < defendWager; i++) { defendingDice.add(whiteDice[i]); } } private void verifyWagers(final int attackWager, final int defendWager) { if (attackWager < 1 || attackWager > maxRed) { throw new IllegalArgumentException("Offensive wager out of range: " + attackWager); } if (defendWager < 1 || defendWager > maxWhite) { throw new IllegalArgumentException("Defensive wager out of range: " + defendWager); } } private static void reportCasualties(final String who, final int count) { if (count == 0) return; System.out.print(who + " loses " + count + " arm"); System.out.println(count == 1 ? "y." : "ies."); } } /** An instance of an AbstractRisk game that adopts rules of a standard game of Risk. * * Defenders always win ties when dice are rolled. This gives the defending player the advantage * in "one-on-one" fights, but the attacker's ability to use more dice offsets this advantage. * It is always advantageous to roll the maximum number of dice, unless an attacker wishes to * avoid moving men into a 'dead-end' territory, in which case they may choose to roll fewer than * three. Thus when rolling three dice against two, three against one, or two against one, the * attacker has a slight advantage, otherwise the defender has an advantage. * * See also: https://en.wikipedia.org/wiki/Risk_(game) */ class StandardRisk extends AbstractRisk { protected StandardRisk(Die[] redDice, int maxRed, Die[] whiteDice, int maxWhite) { super(redDice, maxRed, whiteDice, maxWhite); } public StandardRisk(Die[] redDice, Die[] whiteDice) { this(redDice, 3, whiteDice, 2); } /** * Precondition: Wagers have been made, dice have been rolled, and the * attacking and defending dice have been arranged in order from largest * to smallest value. */ public StandardRisk analyzeDice() { defensiveCasualties = 0; offensiveCasualties = 0; final int n = attackingDice.size(); final int m = defendingDice.size(); for (int i = 0; i < n && i < m; i++) { if (attackingDice.get(i).valueOf() > defendingDice.get(i).valueOf()) { defensiveCasualties++; } else { offensiveCasualties++; } } return this; } } /** An instance of an AbstractRisk game that adopts rules of RisiKo! (a variation of Risk). * * RisiKo! derives from the 1957 French game La ConquĂȘte du Monde, better known worldwide as Risk. * RisiKo! is a variant of the game released in Italy, in which the defender is allowed to roll up * to three dice to defend. This variation dramatically shifts the balance of power towards defense. * * See: https://en.wikipedia.org/wiki/RisiKo! * See also: https://en.wikipedia.org/wiki/Risk_(game) */ class RisiKo extends StandardRisk { public RisiKo(Die[] redDice, Die[] whiteDice) { super(redDice, 3, whiteDice, 3); } public String toString() { return "A round of battle in a game of RisiKo!"; } } /** A partial simulation of the dice game Chuck-a-luck that determines winners * but does not compute gains or losses based on odds. * * Chuck-a-luck, also known as birdcage, is a game of chance played with three * dice. It is derived from grand hazard and both can be considered a variant * of sic bo, which is a popular casino game, although chuck-a-luck is more of * a carnival game than a true casino game. The game is sometimes used as a * fundraiser for charity. * * Chuck-a-luck is played with three standard dice that are kept in a device * shaped somewhat like an hourglass that resembles a wire-frame bird cage * and pivots about its centre. The dealer rotates the cage end over end, with * the dice landing on the bottom. Wagers are placed based on possible * combinations that can appear on the three dice. * * WAGER DESCRIPTION * n A specific number will appear. (Known as "Single".) * Triple Any of the triples (all three dice show the same number) will appear. * Big The total score will be 11 (alternatively 12) or higher and not a triple. * Small The total score will be 10 (alternatively 9) or lower and not a triple. * Field The total score will be outside the range of 8 to 12 (inclusive). * * Source: https://en.wikipedia.org/wiki/Chuck-a-luck */ abstract class AbstractChuckALuck implements CarnivalDiceGame { public static final String Triple = "Triple", Big = "Big", Small = "Small", Field = "Field"; protected final Die[] dice; protected final List<String> results = new LinkedList<String>(); private String[] inputs; public AbstractChuckALuck(Die[] dice) { if (dice.length != 3) { throw new IllegalArgumentException("Wrong number of dice."); } this.dice = dice; } public abstract AbstractChuckALuck analyzeDice(); public AbstractChuckALuck printResults() { for (int i = 1; i < inputs.length; i++) { String bet = inputs[i]; if (results.indexOf(bet) >= 0) { System.out.println("Number " + i + " wagered " + bet + " and wins!"); } } return this; } public AbstractChuckALuck processInputs(String[] inputs) { this.inputs = inputs; return this; } public AbstractChuckALuck rollDice() { for (Die die : dice) die.roll(); return this; } public AbstractChuckALuck showDice() { for (Die die : dice) System.out.println(die); return this; } } /** An instance of AbstractChuckALuck that uses typical rules. * * WAGER DESCRIPTION * Big The total score will be 11 or higher and not a triple. * Small The total score will be 10 or lower and not a triple. */ class ChuckALuck extends AbstractChuckALuck { public ChuckALuck(Die[] dice) { super(dice); } public ChuckALuck analyzeDice() { final Integer v1 = dice[0].valueOf(), v2 = dice[1].valueOf(), v3 = dice[2].valueOf(); final int sum = v1 + v2 + v3; results.clear(); // For "Single" wagers. results.add(v1.toString()); results.add(v2.toString()); results.add(v3.toString()); if (v1 == v2 && v2 == v3) { results.add(Triple); } else if (sum >= 11) { results.add(Big); } else if (sum <= 10 ) { results.add(Small); } if (sum < 8 || sum > 12) { results.add(Field); } return this; } public String toString() { return "Chuck-a-Luck"; } } /** An instance of AbstractChuckALuck that uses alternate rules. * * WAGER DESCRIPTION * Big The total score will be 12 or higher and not a triple. * Small The total score will be 9 or lower and not a triple. */ class AlternateChuckALuck extends AbstractChuckALuck { public AlternateChuckALuck(Die[] dice) { super(dice); } public AlternateChuckALuck analyzeDice() { final Integer v1 = dice[0].valueOf(), v2 = dice[1].valueOf(), v3 = dice[2].valueOf(); final int sum = v1 + v2 + v3; results.clear(); // For "Single" wagers. results.add(v1.toString()); results.add(v2.toString()); results.add(v3.toString()); if (v1 == v2 && v2 == v3) { results.add(Triple); } else if (sum >= 12) { // ALTERNATE RULE results.add(Big); } else if (sum <= 9 ) { // ALTERNATE RULE results.add(Small); } if (sum < 8 || sum > 12) { results.add(Field); } return this; } public String toString() { return "Alternate Chuck-a-Luck"; } } /********/ /* DICE */ /********/ class AscendingDiceComparator implements Comparator<Die> { public final int compare(Die d1, Die d2) { return d1.valueOf().compareTo(d2.valueOf()); } } class DescendingDiceComparator implements Comparator<Die> { public final int compare(Die d1, Die d2) { return -1 * d1.valueOf().compareTo(d2.valueOf()); } } class AsciiDie3x7 { public static final String[] sides = { "---------\n" + "| |\n" + "| * |\n" + "| |\n" + "---------" , "---------\n" + "| * |\n" + "| |\n" + "| * |\n" + "---------" , "---------\n" + "| * |\n" + "| * |\n" + "| * |\n" + "---------" , "---------\n" + "| * * |\n" + "| |\n" + "| * * |\n" + "---------" , "---------\n" + "| * * |\n" + "| * |\n" + "| * * |\n" + "---------" , "---------\n" + "| * * |\n" + "| * * |\n" + "| * * |\n" + "---------" , "---------\n" + "| * * |\n" + "| * * * |\n" + "| * * |\n" + "---------" , "---------\n" + "| * * * |\n" + "| * * |\n" + "| * * * |\n" + "---------" , "---------\n" + "| * * * |\n" + "| * * * |\n" + "| * * * |\n" + "---------" , "---------\n" + "| ***** |\n" + "| |\n" + "| ***** |\n" + "---------" , "---------\n" + "| ***** |\n" + "| * |\n" + "| ***** |\n" + "---------" , "---------\n" + "| ***** |\n" + "| * * |\n" + "| ***** |\n" + "---------" , "---------\n" + "| ***** |\n" + "| * * * |\n" + "| ***** |\n" + "---------" , "---------\n" + "|*******|\n" + "| |\n" + "|*******|\n" + "---------" , "---------\n" + "|*******|\n" + "| * |\n" + "|*******|\n" + "---------" , "---------\n" + "|*******|\n" + "|* *|\n" + "|*******|\n" + "---------" , "---------\n" + "|*******|\n" + "|* * *|\n" + "|*******|\n" + "---------" , "---------\n" + "|*** ***|\n" + "|*** ***|\n" + "|*** ***|\n" + "---------" , "---------\n" + "|*** ***|\n" + "|*******|\n" + "|*** ***|\n" + "---------" , "---------\n" + "|*******|\n" + "|*** ***|\n" + "|*******|\n" + "---------" , "---------\n" + "|*******|\n" + "|*******|\n" + "|*******|\n" + "---------" }; } abstract class AbstractDie implements Die { public static Comparator<Die> ascendingComparator = new AscendingDiceComparator(); public static Comparator<Die> descendingComparator = new DescendingDiceComparator(); private Integer value; protected AbstractDie() { value = nextValue(); } public abstract int numberOfSides(); public final Die roll() { value = nextValue(); return this; } public String toString() { return value.toString(); } public final Integer valueOf() { return value; } protected abstract int nextValue(); } abstract class AbstractFairDie extends AbstractDie { protected final int nextValue() { return (int)(1 + Math.random() * numberOfSides()); } } class FairSixSidedDie extends AbstractFairDie { public int numberOfSides() { return 6; } } class FairSixSidedAsciiDie extends FairSixSidedDie { public String toString() { return AsciiDie3x7.sides[valueOf() - 1]; } } class Dodecahedron extends AbstractFairDie { public int numberOfSides() { return 12; } public String toString() { return AsciiDie3x7.sides[valueOf() - 1]; } } class HighRoll implements CarnivalDiceGame { public int sum; private int maxValue; private int[] Dice; private int highDice; public HighRoll(int maxValue, int[] Dice, int highDice) { this.maxValue = maxValue; this.Dice = Dice; this.highDice = highDice; } public HighRoll(Die[] highRollDice) { } public HighRoll analyzeDice() { return this; } public HighRoll rollDice() { int three = 3; int dice1 = (int)(Math.random()* 6); int dice2 = (int)(Math.random()* 6); int dice3 = (int)(Math.random()* 6); int[] dice = {dice1, dice2, dice3}; int max1 = findMax(dice); int max2 = findMax(dice); int max3 = findMax(dice); sum = max1 + max2 + max3; System.out.println("sum is " + sum); System.out.print("eeeeeeeeeeeeee " + sum); return this; } public int findMax(int[] dice) { int max = dice[0]; for(int i = 0; i < dice.length; i++) { if(dice[i] > max) { max = dice[i]; } } return max; } public HighRoll showDice() { return this; } public HighRoll printResults() { return this; } public HighRoll processInputs(String[] inputs) { String inputs1 = inputs[1]; int intInput1 = Integer.parseInt(inputs1); String inputs2 = inputs[2]; int intInput2 = Integer.parseInt(inputs2); System.out.println("input 1 is " + inputs1); System.out.println("input 2 is " + inputs2); System.out.println("sum is " + sum); if(intInput1 <= 15) { if(intInput2 >= (sum - 2) && intInput2 <= (sum + 2)) { //|| intInput2 <= (sum + 2) && intInput2 >= (sum))) System.out.print("you won " + (intInput1 * 2) + "Dollars!!!"); } else { System.out.print("haha loser!!!"); } } else { System.out.print("too much money!"); } return this; } }